IEAP - Institute of Experimental and Applied Physics CTU - Czech Technical University in Prague
Česky English
IEAP - Institute of Experimental and Applied Physics CTU - Czech Technical University in Prague
CTU - Czech Technical University in Prague
Publication  > Articles in Impacted Journals  > '0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration'
0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration

Author
Šimkovic Fedor, prof. RNDr. CSc. IEAP
Rodin Vadim, Dr. Institute fuer Theoretische Physik der Universitaet Tuebingen, D-72076 Tuebingen, Germany
Faessler Amand, Prof. Institute fuer Theoretische Physik der Universitaet Tuebingen, D-72076 Tuebingen, Germany
Vogel Petr, Prof. Kellogg Radiation Laboratory and Physics Department, California Institute of Technology, Pasadena, California 91125, USA

Year
2013

Scientific journal
Phys. Rev. C 87, 045501


Abstract
Within the quasiparticle random-phase approximation (QRPA) we achieve partial restoration of the isospin symmetry and hence fulfillment of the requirement that the 2νββ Fermi matrix element M2ν F vanishes, as it should, unlike in the previous version of the method. This is accomplished by separating the renormalization parameter gpp of the particle-particle proton-neutron interaction into isovector and isoscalar parts. The isovector parameter gT=1pp needs to be chosen to be essentially equal to the pairing constant gpair, so no new parameter is needed. For the 0νββ decay the Fermi matrix element M0νF is substantially reduced, while the full matrix element M0ν is reduced by≈10%. We argue that this more consistent approach should be used from now on in the proton-neutron QRPA and in analogous methods.

Cite article as:
F. Šimkovic, V. Rodin, A. Faessler, P. Vogel, "0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration", Phys. Rev. C 87, 045501 (2013)

Search
10th Anniversary of IEAP